[tex] \mathsf{C_{n,p}=\dfrac{n!}{p!(n-p)!}\iff A_{n,p}=\dfrac{n!}{(n-p)!} } [/tex]
[tex] \mathsf{ C_{3,2}\cdot A_{6,4}=\dfrac{3!}{2!\cdot(3-2)!}\cdot\dfrac{6!}{(6-4)!} } [/tex]
[tex] \mathsf{ C_{3,2}\cdot A_{6,4}=\dfrac{3\cdot\diagup\!\!\!\!2!}{\diagup\!\!\!\!2! }\cdot \dfrac{6\cdot5\cdot4\cdot3\cdot\diagup\!\!\!\!2!}{\diagup\!\!\!\!2!}} [/tex]
[tex] \mathsf{C_{3,2}\cdot A_{6,4}=3\cdot 6\cdot5\cdot4\cdot3} [/tex]
[tex]\boxed{\boxed{\mathsf{ C_{3,2}\cdot A_{6,4}=1080}}}[/tex]